Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information-Theoretic Characterization of Sparse Recovery

We formulate sparse support recovery as a salient set identification problem and use information-theoretic analyses to characterize the recovery performance and sample complexity. We consider a very general framework where we are not restricted to linear models or specific distributions. We state non-asymptotic bounds on recovery probability and a tight mutual information formula for sample com...

متن کامل

Sparse Recovery Using Sparse Random Matrices

Over the recent years, a new *linear* method for compressing high-dimensional data (e.g., images) has been discovered. For any high-dimensional vector x, its *sketch* is equal to Ax, where A is an m x n matrix (possibly chosen at random). Although typically the sketch length m is much smaller than the number of dimensions n, the sketch contains enough information to recover an *approximation* t...

متن کامل

Dense Factors of Sparse Matrices

The method of Implicit LU factors for factorizing a nonsingular matrix A, and hence solving systems of equations, is described. It is shown how the factors are related to the regular LU factors computed by Gaussian Elimination. A backward error analysis is given and discussed. Implicit LU factors are shown to be advantageous when a copy of A is kept for other purposes, and particularly so when ...

متن کامل

Note on sparse signal recovery

Definition 1 (Restricted isometry and orthogonality). The S-restricted isometry constant δS of a matrix F ∈ Rn×m is the smallest quantity such that (1− δS)‖x‖2 ≤ ‖FTx‖2 ≤ (1 + δS)‖x‖2 for all T ⊆ [m] with |T | ≤ S and all x ∈ R|T |. The (S, S′)-restricted orthogonality constant θS,S′ of F is the smallest quantity such that |FTx · FT ′x′| ≤ θS,S′‖c‖‖c‖ for all disjoint T, T ′ ⊆ [m] with |T | ≤ S...

متن کامل

Sparse signal recovery using sparse random projections

Sparse signal recovery using sparse random projections

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2010

ISSN: 0018-9448

DOI: 10.1109/tit.2010.2046199